Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Food Chem ; 448: 139143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38554584

ABSTRACT

Sustainable carboxymethyl cellulose (CMC)-based active composite films were developed through the addition of polyphenol-rich extract from coffee husk (CHE) and carbon dots (CDs) prepared using the biowaste residue of CHE extraction. The influences of various CDs contents on the physicochemical and functional characteristics of composite films have been researched. The 6% (w/w) CHE and 3% (w/w) CDs were uniformly dispersed within the CMC matrix to produce a homogenous film with enhanced mechanical properties. The CMC/CHE/CDs3% film exhibited outstanding UV-light blocking, improved water and gas barriers, potent antioxidant activity with above 95% DPPH and ABTS scavenging rates, and effective antibacterial capabilities against L. monocytogenes and E. coli. The food packaging experiment demonstrated that this active composite film slowed the rotting of fresh-cut apples and extended their shelf-life to 7 days at 4 °C storage. Therefore, the obtained multifunctional film showed promise as an environmentally friendly food packaging material.


Subject(s)
Carbon , Carboxymethylcellulose Sodium , Food Packaging , Plant Extracts , Polyphenols , Waste Products , Food Packaging/instrumentation , Polyphenols/chemistry , Carboxymethylcellulose Sodium/chemistry , Plant Extracts/chemistry , Carbon/chemistry , Waste Products/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Listeria monocytogenes/drug effects , Antioxidants/chemistry , Coffee/chemistry , Coffea/chemistry , Quantum Dots/chemistry , Malus/chemistry
2.
Int J Biol Macromol ; 266(Pt 1): 130838, 2024 May.
Article in English | MEDLINE | ID: mdl-38521322

ABSTRACT

Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.


Subject(s)
Anti-Bacterial Agents , Carboxymethylcellulose Sodium , Disulfides , Escherichia coli , Molybdenum , Nanofibers , Photochemotherapy , Staphylococcus aureus , Molybdenum/chemistry , Molybdenum/pharmacology , Disulfides/chemistry , Disulfides/pharmacology , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photochemotherapy/methods , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Staphylococcus aureus/drug effects , Animals , Escherichia coli/drug effects , Wound Healing/drug effects , Mice , Reactive Oxygen Species/metabolism , Photothermal Therapy/methods , Bandages
3.
Int J Biol Macromol ; 263(Pt 1): 130302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382794

ABSTRACT

In this study, dialdehyde carboxymethyl cellulose (DCMC, 10 wt% based on gelatin) and varying contents of coffee leaf extract (CLE, 1, 3, 5 and 7 wt% based on gelatin) were incorporated into gelatin (GEL) matrix to develop multifunctional food packaging films. DCMC acted as a physical reinforcing filler through crosslinking with GEL matrix by Schiff-base reaction, CLE served as an active filler to confer film functional properties. The micro-morphology, micro-structure, physicochemical and functional properties of the GEL/DCMC/CLE composite film were investigated. The results demonstrated that mechanical, barrier properties and thermal stability of films were significantly improved by incorporation of CLE. Compared with pure GEL film, the GEL/DCMC/5%CLE film exhibited excellent UV light blocking while kept enough transparency, the best mechanical property, water resistance, water vapor and oxygen barrier, as well as thermal stability. GEL/DCMC/5%CLE film also possessed strong antioxidant activity and some antibacterial activity against E. coli and S. aureus. Packaging application testing demonstrated that the resultant GEL/DCMC/5%CLE film effectively delayed the lipid oxidation of walnut oil and preserved the postharvest freshness of fresh walnut kernels under ambient conditions.


Subject(s)
Carboxymethylcellulose Sodium , Food Packaging , Carboxymethylcellulose Sodium/chemistry , Gelatin/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/pharmacology
4.
Int J Biol Macromol ; 263(Pt 2): 130362, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395287

ABSTRACT

In this study, anthocyanin from Garcinia mangostana shell extract (Mse) was used as pH indicator to prepare intelligent carboxymethyl cellulose (CMC) based composite films. The structure and properties of the CMC-based composite films were characterized and discussed in detail. Results showed that the CMC-based composite films with Mse had excellent mechanical, antibacterial and antioxidant abilities. Especially, the carboxymethyl cellulose/corn starch/Garcinia mangostana shell extract (CMC/Cst/Mse) composite film had best mechanical properties (20.62 MPa, 4.06 % EB), lowest water vapor permeability (1.80 × 10-12 g·cm/(cm2·s·Pa)), excellent ultraviolet (UV) blocking performance, and the best antibacterial and antioxidant abilities. The pH sensitivity of composite films which had Mse obviously changed with time when the fish freshness was monitored at 25 °C. Given the good pH sensitivity of the composite films, it had significant potential for application of intelligent packaging film as a food packaging material to indicate the freshness of fish.


Subject(s)
Antioxidants , Garcinia mangostana , Animals , Antioxidants/chemistry , Anthocyanins/pharmacology , Carboxymethylcellulose Sodium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging/methods , Plant Extracts/pharmacology
5.
Food Chem ; 445: 138721, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38359571

ABSTRACT

The aim of this study was to modify carboxymethyl cellulose (CMC) films with onion peel extract (OPE) (0-2 g), onion peel powder (OPP) (0-2 g) and boron nitride nanoparticles (BN) (0-100 mg). 17 different CMC/OPE/OPP/BN films were provided and the physicochemical properties of films were studied. The release of active compounds of the composite film was investigated over time. The obtained results showed that OPE, OPP and BN increased the physical resistance and flexibility of the films. The percentage of moisture and solubility of the films decreased with the increase of OPE, OPP and BN. By adding BN, OPE and OPP, the structure of the film became stronger and the permeability to water vapor decreased. Addition of OPE and OPP significantly increased the antioxidant property of the film. In general, it can be said that the antioxidant substances of the onion peel are protected inside the film by preparing a CMC/OPE/OPP/BN film, which, in addition to stabilizing the antioxidants, can play an effective role in the controlled release of these antioxidant substances.


Subject(s)
Antioxidants , Boron Compounds , Onions , Antioxidants/chemistry , Onions/chemistry , Carboxymethylcellulose Sodium/chemistry , Powders , Food Packaging
6.
Int J Biol Macromol ; 256(Pt 2): 128545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043668

ABSTRACT

Phytic acid-modified carboxymethyl cellulose (CMC-PA) has been investigated as a promising adsorbent for the removal of uranium from aqueous solutions. The synthesis of CMC-PA involves the hydrogen bonding interaction between CMC and PA, resulting in the incorporation of PA groups onto the cellulose backbone. The hydrophilicity, reusability and adsorption capacity of the prepared CMC-PA hydrogel have improved with the increase of PA content. Moreover, the adsorption experiments were conducted by varying parameters such as pH, initial uranium concentration, and contact time. The results showed that CMC-PA exhibited excellent uranium adsorption performance, with a theoretical maximum adsorption capacity of 436 mg/g. In addition, the material exhibits excellent reusability, and the reusability improves with the increase of crosslinking density, indicating that the crosslinking structure of the polymer gel can effectively enhance the structural stability of the material. Furthermore, CMC-PA also exhibits high selective adsorption performance towards uranium ions in the presence of various competing ions. Its high adsorption capacity, reusability, and selectivity make it a promising candidate for high-performance uranium ion adsorbents.


Subject(s)
Uranium , Water Pollutants, Chemical , Hydrogels , Carboxymethylcellulose Sodium/chemistry , Phytic Acid , Adsorption , Ions , Water/chemistry , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/chemistry
7.
Int J Biol Macromol ; 255: 128203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979741

ABSTRACT

Incorporating a bioactive food waste extract into biodegradable polymers is a promising green approach to producing active films with antioxidant and antibacterial activity for food packaging. Active packaging films from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) incorporated with tamarind seed coat waste extract (TS) were prepared by solvent casting method using citric acid as a crosslinking agent. The effect of TS content on the film properties was determined by measuring the optical, morphology, mechanical, water vapor transmission rate (WVTR), antioxidant, and antimicrobial attributes. The CMC/PVA-TS films were also tested on fresh pork. The addition of TS did not significantly affect the film structure and WVTR but it improved the mechanical and UV barrier properties. The films possessed antioxidant and antimicrobial ability against bacteria (S. aureus and E. coli). Thus, CMC/PVA packaging was successfully prepared, and the incorporation of TS enhanced the antioxidant and antimicrobial properties of the film, which extended the shelf-life of fresh pork.


Subject(s)
Anti-Infective Agents , Refuse Disposal , Tamarindus , Food Packaging/methods , Antioxidants/pharmacology , Antioxidants/chemistry , Carboxymethylcellulose Sodium/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Ethanol/pharmacology , Polyvinyl Alcohol/chemistry , Steam , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds
8.
Int J Biol Macromol ; 243: 125128, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37268066

ABSTRACT

Serious side effects of chemotherapy drugs greatly limited the anticancer performance, while targeted drug delivery could improve the therapeutic effect and reduce side effects. In this work, biodegradable hydrogel was fabricated from pectin hydrazide (pec-H) and oxidized carboxymethyl cellulose (DCMC) for localized Silibinin delivery in lung adenocarcinoma treatment. The self-healing pec-H/DCMC hydrogel showed blood compatibility and cell compatibility both in vitro and in vivo, and could be degraded by enzymes. The hydrogel also formed fast fit for injectable applications and showed sustained drug release characteristic sensitive to pH based on acylhydrzone bond cross-linked networks. The Silibinin, as a specific lung cancer inhibiting drug targets TMEM16A ion channel, was loaded into the pec-H/DCMC hydrogel to treat the lung cancer in mice model. The results showed that the hydrogel loaded Silibinin significantly enhanced the anti-tumor efficiency in vivo and greatly reduced the toxicity of the Silibinin. Based on the dual effect of improving efficacy and reducing side effects, the pec-H/DCMC hydrogel with Silibinin loading have broad application prospects to inhibit lung tumor growth in clinic.


Subject(s)
Hydrogels , Lung Neoplasms , Mice , Animals , Silybin , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Pectins , Lung Neoplasms/drug therapy
9.
J Biotechnol ; 367: 71-80, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37028560

ABSTRACT

In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).


Subject(s)
Fibroins , Hyperthermia, Induced , Neoplasms , Humans , Fibroins/pharmacology , Fibroins/chemistry , Hydrogels , Carboxymethylcellulose Sodium/pharmacology , Carboxymethylcellulose Sodium/chemistry , Spectroscopy, Fourier Transform Infrared , HEK293 Cells , Magnetic Phenomena , Neoplasms/drug therapy
10.
Int J Biol Macromol ; 237: 124076, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934815

ABSTRACT

In the current study, cellulose was extracted from sugarcane bagasse and further converted into carboxy methyl cellulose. The morphological, chemical, and structural characterization of synthesizeed carboxy methyl cellulose was performed. Further, the biopolymer was fabricated with mycogenic selenium nanoparticles and used to develop the biopolymer films. The developed biopolymer films were examined for the fruit shelf life stability, antifungal activity, and biodegradation potential. The results revealed that grapes wrapped with biofilms showed enhanced shelf life of fruit at all storage time intervals. The study also witnesses the antifungal activity of biopolymer films with a remarkable inhibitory action on the spores of Fusarium oxysporum and Sclerospora graminicola phytopathogens. Lastly, the biopolymer films were significantly degradable in the soil within two weeks of incubation. Thus, the developed biopolymer films exhibit multifaceted properties that can be used as an alternative to synthetic plastics for fruit packaging and also helps in protecting against fungal contaminants during storage with naturally degradable potential.


Subject(s)
Nanoparticles , Saccharum , Selenium , Vitis , Cellulose/chemistry , Carboxymethylcellulose Sodium/chemistry , Antifungal Agents , Biopolymers , Nanoparticles/chemistry , Food Packaging/methods
11.
Int J Biol Macromol ; 233: 123621, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36773864

ABSTRACT

5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method. The fabricated emulsion has been employed as the 5-FU carrier to investigate its effects on drug half-life, side effects, drug loading efficiency (DLE), and drug entrapment efficiency (DEE). Analyzing the FTIR and XRD indicated the successful loading of 5-FU into the nanocarrier and affirmed the synthesized nanocomposite's chemical bonding and crystalline features. Furthermore, by using DLS and Zeta potential assessment, size and undersize distribution, as well as the stability of the drug-loaded nanocomposite were determined, which demonstrated the monodisperse and stable nanoparticles. Moreover, the nanocomposites with spherical shapes and homogeneous surfaces were shown in FE-SEM, which indicated good compatibility for the constituents of the nanocomposites. Moreover, by employing BET analysis the porosity has been investigated. Drug release pattern was studied, which indicated a controlled drug release behavior with above 96 h drug retention. Besides, the loading and entrapment efficiencies were obtained 44 % and 86 %, respectively. Furthermore, the curve fitting technique has been employed and the predominant release mechanism has been determined to evaluate the best-fitted kinetic models. MTT assay and flow cytometry assessment has been carried out to investigate the cytotoxic effects of the fabricated drug-loaded nanocomposite on MCF-7 and normal cells. The results showed enhanced cytotoxicity and late apoptosis for the PVP/CMC/γ-alumina/5-FU. Based on the MTT assay outcomes on normal cell lines (L929), which indicated above 90 % cell viability, the biocompatibility and biosafety of the synthesized nanocarrier have been confirmed. Moreover, due to the porosity of the PVP/CMC/γ-alumina, this nanocarrier can exploit from high specific surface area and be more sensitive to environmental conditions such as pH. These outcomes propose that the novel pH-sensitive PVP/CMC/γ-alumina nanocomposite can be a potential candidate for drug delivery applications, especially for cancer therapy.


Subject(s)
Antineoplastic Agents , Fluorouracil , Fluorouracil/chemistry , Carboxymethylcellulose Sodium/chemistry , Porosity , Povidone , Aluminum Oxide/pharmacology , Emulsions , Water , Hydrogen-Ion Concentration , Drug Carriers/chemistry , Drug Liberation
12.
Food Chem ; 403: 134320, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36162267

ABSTRACT

A novel film composed of Polygonatum cyrtonema extracts (PCE), xanthan gum (XG), flaxseed gum (FG) and carboxymethyl cellulose (CMC) was prepared (XFCP). Addition of PCE has decreased the light transmittance, while enhanced the UV blocking performance, antioxidant activity, tensile strength and elongation at break of XFCP due to polysaccharides, polyphenols, and flavonoid in PCE. Structural analyses by FTIR and XRD indicated the hydrogen-bonding interaction between PCE, XG, FG and CMC. It was found that compared with the control sample, XFCP2.5% with the lowest WVTR was able to prolong the shelf life of mango. The overall quality of mango was also improved in terms of lower decay rate, weight loss rate, total soluble solid, and polyphenol oxidase, higher titratable acidity, Vc, and superoxide dismutase than control mango upon 8 days of storage. This effectively expanded the application of PCE into food packaging in addition to merely as Chinese traditional medicine herbs.


Subject(s)
Flax , Mangifera , Polygonatum , Carboxymethylcellulose Sodium/chemistry , Antioxidants/chemistry , Polysaccharides, Bacterial/chemistry , Food Packaging , Plant Extracts
13.
Int J Biol Macromol ; 222(Pt B): 2318-2326, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36216103

ABSTRACT

In this study, docosanoic acid, a very long chain fatty acid, was used to modify pectin, and the products were incorporated with carboxylmethyl cellulose (CMC) to prepare a hydrophobic composite. Results of structural characterisation showed that docosanoic acid was grafted to pectin through the esterification reaction, and the highest grafting ratio was 7.89 %. After grafting with docosanoic acid, the emulsifying activity and stability of pectin were significantly enhanced from 1.23 × 10-2 and 9.27 % to 4.78 × 10-2 and 26.73 %. Moreover, when modified pectin was blended with CMC instead of native pectin, the hydrophobicity of the composite membranes increased significantly. In detail, the highest contact angle of the composite membrane incorporated with modified pectin was 97.6°, which was much higher than that with native pectin (68.9°). As the grafting ratio of pectin increased, the water vapor permeability of the composite membranes significantly increased, while the water absorption decreased. Furthermore, the mechanical properties and transparency of the composite membranes could be improved by grafting docosanoic acid into pectin. All the results indicated that incorporating docosanoic acid possibly helped improve the comprehensive properties of the composite membranes based on polysaccharides and expand their application in food packaging.


Subject(s)
Carboxymethylcellulose Sodium , Pectins , Carboxymethylcellulose Sodium/chemistry , Pectins/chemistry , Food Packaging/methods , Cellulose/chemistry , Hydrophobic and Hydrophilic Interactions , Fatty Acids
14.
Int J Biol Macromol ; 209(Pt A): 525-532, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35405155

ABSTRACT

The current study sought to fabricate pectin nano-films from Premna microphylla Turcz (PMTP) leaves using a combination of ZnO-carboxymethyl cellulose. The rheological and physical properties of fabricated nano-ZnO films were studied. Spectroscopy FT-IR, microscopic study (SEM), thermogravimetry (TG), and XRD were applied to characterize the fabricated film. The antibacterial activity of the nanofilm was determined using the antibacterial circle method. The findings showed that the addition of PMTP can reduce the nanofilm color, water solubility/hydrophilicity, air permeability, and ultraviolet light permeability of the nanofilm. Treatment CPN0.5 achieved the optimized Tensile strength (TS) of 4.50 Mpa, significant differences compared to CPN2 (3.99 Mpa) and CPN1 (3.65 Mpa). In addition, treatment CPN1 achieved the lowest WVP value (29.35) compared to the highest value (41.62) achieved by CPN0.5 treatment with no significant differences with CPN3 (29.7) and CPN1 (30.98) treatments. Elongation (E%) at break was the best for each CP10 (74.9) and CPN0.5 (73.03). Moreover, ZnO can enhance the nanofilm activity and the nanofilm water swelling ratio. Furthermore, adding ZnO to the nano-formula improved the antibacterial activity of the fabricated film against Staphylococcus aureus. In sum, nanofilms fabricated of PMTP and ZnO possess promising prospects as antibacterial agents in packaging applications.


Subject(s)
Lamiaceae , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium/chemistry , Food Packaging , Pectins , Permeability , Plant Leaves , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Zinc Oxide/chemistry
15.
Int J Biol Macromol ; 206: 1012-1025, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35318078

ABSTRACT

This study aimed to evaluate the effect of incorporating different concentrations (0, 200, 300, and 400 mg L-1) of avocado peel extracts (EE-AP) on the physicochemical properties and antifungal activity of gelatin-carboxymethylcellulose (Gel-CMC) films and their applicability in berry preservation. The results showed that incorporating EE-AP was compatible with the Gel-CMC film and enhanced the mechanical properties without affecting the integrity and thermal properties. The 200 mg L-1 of EE-AP concentration on films offered the best barrier properties against water vapor (2.90 × 10-11 g m-1 s-1 Pa-1). FTIR identified the intramolecular and intermolecular interactions between the functional groups of biopolymers and the EE-AP. The results obtained revealed that EE-AP incorporation into gelatin-carboxymethylcellulose films significantly decreased the moisture content (from 12.48 to 11.02%) and solubility (from 40.13 to 35.39%) of the films. All films incorporated with EE-AP showed higher colorimetric parameters and opacity than the control film (p < 0.05). The DPPH radical scavenging ability of the Gel-CMC films was increased from 24.16 to 41.12, 57.21, and 63.47%, as the extract concentration increased. Active films presented excellent ultraviolet-visible light barrier properties. The antioxidant pigments (flavonoids and chlorophylls) were estimated spectrophotometrically through absorbance. In vitro tests indicated high effectiveness to inhibit the growth of Rhizopus stolonifer and Aspergillus niger. A preservation study indicated the absence of fungal development in berries over six days of storage. In conclusion, gelatin-carboxymethylcellulose films with EE-AP represent a potential option for active packaging and can preserve fresh fruit.


Subject(s)
Carboxymethylcellulose Sodium , Persea , Antioxidants/chemistry , Antioxidants/pharmacology , Carboxymethylcellulose Sodium/chemistry , Food Packaging/methods , Fruit , Gelatin/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
Carbohydr Polym ; 278: 118859, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973724

ABSTRACT

The effect of polysaccharide coatings on the stability and release characteristics of selenium nanoparticles (SeNPs) was evaluated by comparing the characteristics of chitosan-coated SeNPs (CS-SeNPs) and sodium carboxymethyl cellulose-coated SeNPs (CMC-SeNPs). The release characteristics of SeNPs were investigated in storage conditions, gastrointestinal conditions, and free radical systems. CMC-SeNPs formed dimers or trimers, whereas CS-SeNPs were monodispersed but formed large aggregates in a pH range of 7.4-8.25. Upon 50 days of storage at 30 °C, both CMC-SeNPs and CS-SeNPs were converted to Se4+. SeNPs exhibited a lower release rate in simulated gastrointestinal conditions than in free radical systems. SeNPs release in ABTS and superoxide anion free radical systems followed the first-order and Korsmeyer-Peppas models, respectively, indicating that SeNP release is mainly governed by dissolution mechanisms. Additional studies are needed to examine the potential environmental effects and biological activity of the Se4+ released from SeNPs.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Nanoparticles/chemistry , Selenium/chemistry , Coated Materials, Biocompatible/chemical synthesis , Hydrodynamics , Particle Size , Surface Properties
17.
Biomed Res Int ; 2021: 9853977, 2021.
Article in English | MEDLINE | ID: mdl-34568496

ABSTRACT

Periodontitis comprises a chronic inflammation that is initiated by microbiota biofilm. If left untreated, periodontitis may lead to permanent tooth loss. Herein, we propose to design and improve a localized form of therapy comprising a chlorhexidine-impregnated hydrogel. Hydrogel films were prepared by varying the ratio between cellulose (MCC) and carboxymethylcellulose sodium (CMC) using the crosslinker epichlorohydrin (ECH). The hydrogel was loaded with chlorhexidine. Increasing the CMC ratio led to a reduction in the number of pores, an increase in their size, lower glass transition temperature (T g ), decreased Young's modulus, and increased film stretching and affected the time of release. Bacterial and fungal zones of inhibition showed similar activity and were not affected by the CMC and MCC ratio. Hydrogels loaded with chlorhexidine prevented the growth of S. oralis and C. albicans microorganisms and may provide a promising local delivery system for treating periodontitis.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Chlorhexidine/therapeutic use , Methylgalactosides/therapeutic use , Periodontitis/drug therapy , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Chlorhexidine/pharmacology , Drug Liberation , Elastic Modulus , Fungi/drug effects , Glass/chemistry , Humans , Kinetics , Methylgalactosides/pharmacology , Microbial Sensitivity Tests , Tensile Strength , Transition Temperature
18.
Food Chem ; 362: 130181, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34082291

ABSTRACT

The effect of carboxymethyl cellulose (CMC), high-methoxyl pectin (HMP), konjac glucomannan (KGM), and xanthan gum (XG) on the physicochemical, structural properties, and digestibility of rice starch were investigated and compared. The four viscous soluble dietary fibers (VSDFs) increased the viscosity, storage modulus and loss modulus while decreased the pasting temperature and gelatinization enthalpy. Moreover, XG produced the lowest peak viscosity and dynamic modulus compared with the other VSDFs. Furthermore, the degree of short-range ordered structure of starch with KGM increased from 0.8448 to 0.8716; and the relative crystallinity of starch with XG increased by 12%. An ordered and reunited network structure was observed in SEM. In addition, VSDF inhibited the digestibility of rice starch and significantly increased the resistant starch content. This study compared the effect of four VSDFs on the physicochemical, structural and digestion properties of rice starch to fully understand and develop their application to starchy foods.


Subject(s)
Dietary Fiber , Oryza/chemistry , Starch/chemistry , Starch/pharmacokinetics , Calorimetry, Differential Scanning , Carboxymethylcellulose Sodium/chemistry , Digestion , Mannans/chemistry , Pectins/chemistry , Polysaccharides, Bacterial/chemistry , Resistant Starch , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , Viscosity
19.
Molecules ; 26(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920154

ABSTRACT

Cross-linked chitosan (CS) films with aldehyde groups obtained by oxidation of carboxymethyl cellulose (CMC) with NaIO4 were prepared using different molar ratios between the CHO groups from oxidized carboxymethyl cellulose (CMCOx) and NH2 groups from CS (from 0.25:1 to 2:1). Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy demonstrated the aldehyde groups' presence in the CMCOx. The maximum oxidation degree was 22.9%. In the hydrogel, the amino groups' conversion index value increased when the -CHO/-NH2 molar ratio, cross-linking temperature, and time increased, while the swelling degree values decreased. The hydrogel films were characterized by scanning electron microscopy (SEM) and FTIR analysis. The curcumin encapsulation efficiency decreases from 56.74% to 16.88% when the cross-linking degree increases. The immobilized curcumin release efficiency (REf%) and skin membrane permeability were evaluated in vitro in two different pH solutions using a Franz diffusion cell, and it was found to decrease when the molar ratio -CH=O/NH2 increases. The curcumin REf% in the receptor compartment was higher at pH = 7.4 (18%- for the sample with a molar ratio of 0.25:1) than at pH = 5.5 (16.5%). The curcumin absorption in the skin membrane at pH = 5.5 (47%) was more intense than at pH = 7.4 (8.6%). The curcumin-loaded films' antioxidant activity was improved due to the CS presence.


Subject(s)
Cellulose, Oxidized/pharmacology , Chitosan/pharmacology , Curcumin/pharmacology , Skin Diseases/drug therapy , Animals , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Cell Line , Cell Membrane Permeability/drug effects , Cellulose, Oxidized/chemistry , Chickens , Chitosan/chemistry , Curcumin/chemistry , Dermatologic Agents/chemistry , Dermatologic Agents/pharmacology , Drug Delivery Systems , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Skin Diseases/pathology , Spectroscopy, Fourier Transform Infrared
20.
Carbohydr Polym ; 255: 117395, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436223

ABSTRACT

Yogurt drinks can potentially be an appropriate medium for delivering probiotics to consumers. This study investigated the influences of the water-soluble fraction of bitter almond gum (SBAG) and its conjugate with sodium caseinate (SBAG-SC) compared to carboxymethylcellulose (CMC) and inulin, respectively, on the physical stability of casein micelles and the viability of the probiotic culture (Lactobacillus acidophilus La-5) in probiotic yogurt drink during cold storage. The addition of SBAG-SC conjugate to the drinks successfully prevented phase separation for a longer time than CMC. CMC-based drinks exhibited a strong shear-thinning response. Adding SBAG helped keep Lactobacillus acidophilus La-5 viable above the recommended level for probiotic products. However, the SBAG showed relatively less prebiotic property than inulin. This study demonstrated that SBAG-SC conjugate has a high potential for stabilizing applications in yogurt and yogurt products.


Subject(s)
Dietary Supplements/analysis , Plant Gums/chemistry , Prebiotics/analysis , Probiotics/analysis , Prunus dulcis/chemistry , Yogurt/analysis , Carboxymethylcellulose Sodium/chemistry , Caseins/chemistry , Food Storage/methods , Glycoconjugates/chemistry , Humans , Inulin/chemistry , Lactobacillus acidophilus/physiology , Liquid-Liquid Extraction/methods , Micelles , Yogurt/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL